[1] Su Y T, Liu Y Q, Zhou Y Q, et al.Broadband LEO satellite communications: Architectures and key technologies[J]. IEEE Wireless Communications, 2019, 26(2): 55-61. DOI: 10.1109/MWC.2019.1800299. [2] 邹恒光, 惠腾飞, 翟盛华, 等. 卫星通信技术发展综述[J]. 空间电子技术, 2025, 22(S1): 1-19. [3] Chan V W S. Free space optical communication and network architecture-fundamentals, history and looking forward[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2026, 32(1: Advances in Free Space Laser Communications): 9900120. DOI: 10.1109/JSTQE.2025.3600154. [4] Chaudhry A U, Yanikomeroglu H.Laser intersatellite links in a starlink constellation: A classification and analysis[J]. IEEE Vehicular Technology Magazine, 2021, 16(2): 48-56. DOI: 10.1109/MVT.2021.3063706. [5] Bhattacharjee D, Madoery P G, Chaudhry A U, et al.On-demand routing in LEO mega-constellations with dynamic laser inter-satellite links[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 7089-7105. DOI: 10.1109/TAES.2024.3415571. [6] 李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J]. 红外与激光工程, 2023, 52(3): 20220393. DOI: 10.3788/IRLA20220393. [7] Kaymak Y, Rojas-Cessa R, Feng J H, et al.A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1104-1123. DOI: 10.1109/COMST.2018.2804323. [8] Kaushal H, Kaddoum G.Optical communication in space: Challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57-96. DOI: 10.1109/COMST.2016.2603518. [9] Tang K Y, Sun X B.Congestion control and routing optimization for LEO satellite networks based on deep reinforcement learning[C]//2024 IEEE 7th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). December 27-29, 2024, Shenyang, China. IEEE, 2024: 746-749. DOI: 10.1109/AUTEEE62881.2024.10869716. [10] Zuo P L, Wang C, Yao Z, et al.An intelligent routing algorithm for LEO satellites based on deep reinforcement learning[C]//2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). September 27-30, 2021, Norman, OK, USA. IEEE, 2021: 1-5. DOI: 10.1109/VTC2021-Fall52928.2021.9625325. [11] Ding Z L, Liu H J, Tian F, et al.SDDRL-SR: A high-reliability satellite routing algorithm based on deep reinforcement learning[C]//2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring). June 24-27, 2024, Singapore, Singapore. IEEE, 2024: 1-6. DOI: 10.1109/VTC2024-Spring62846. 2024. 10683203. [12] 刘兆洋, 潘必韬. 基于强化学习的光网络自适应高效率RWA算法[J]. 光通信研究, 2024(5): 66-73. DOI: 10.13756/j.gtxyj.2024.240024. [13] Ran Y Y, Ding Y J, Chen S W, et al.Fully-distributed dynamic packet routing for LEO satellite networks: A GNN-enhanced multi-agent reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 5229-5234. DOI: 10.1109/TVT. 2024.3499933. [14] 汪红光, 江逸茗, 刘侠君, 等. 基于强化学习的软件定义卫星互联网自适应负载均衡策略[J/OL]. 计算机科学, 2025: 1-9. (2025-07-07)[2025-10-22]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSJA2025070400I&dbname=CJFD&dbcode=CJFQ. [16] Lyu Y F, Hu H, Fan R F, et al.Dynamic routing for integrated satellite-terrestrial networks: A constrained multi-agent reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(5): 1204-1218. DOI: 10.1109/JSAC.2024.3365869. [17] Li Y B, Chen Y.Propagation modeling and analysis for terahertz inter-satellite communications using FDTD methods[C]//2021 IEEE International Conference on Communications Workshops (ICC Workshops). June 14-23, 2021, Montreal, QC, Canada. IEEE, 2021: 1-6. DOI: 10.1109/ICCWorkshops 50388. 2021.9473712. [18] Zhang S B, Liu A J, Han C, et al.GRLR: routing with graph neural network and reinforcement learning for mega LEO satellite constellations[J]. IEEE Transactions on Vehicular Technology, 2025, 74(2): 3225-3237. DOI: 10.1109/TVT.2024.3471658. |